
 Application: Simulation 381

 The following pseudocode shows how you could use a priority queue to organize your assign-
ments and other responsibilities so that you know which one to complete fi rst:

 assignmentLog = a new priority queue using due date as the priority value
project = a new instance of Assignment
essay = a new instance of Assignment
task = a new instance of Assignment
errand = a new instance of Assignment
 assignmentLog.add(project)
 assignmentLog.add(essay)
 assignmentLog.add(task)
 assignmentLog.add(errand)
cout << "I should do the following first: "
cout << assignmentLog.peek()

 13.4 Application: Simulation
Simulation —a major application area for computers—is a technique for modeling the behavior of
both natural and human-made systems. Generally, the goal of a simulation is to generate statistics
that summarize the performance of an existing system or to predict the performance of a proposed
system. In this section we will consider a simple example that illustrates one important type of
simulation.

 A problem to solve. Ms. Simpson, president of the First City Bank of Springfi eld, has heard her cus-
tomers complain about how long they have to wait for service at the branch located in a downtown
grocery store. Because she fears losing those customers to another bank, she is considering whether
to hire a second teller for that branch.

 Before Ms. Simpson hires another teller, she would like an approximation of the average time
a customer has to wait for service from that branch’s only teller. Ms. Simpson heard you were great
at solving problems and has come to you for help. How can you obtain this information for
Ms. Simpson?

 Considerations. You could stand with a stopwatch in the bank’s lobby all day, but that task is not
particularly exciting. Besides, you should use an approach that also allows Ms. Simpson to predict
how much improvement she could expect if the bank hired a given number of additional tellers. She
certainly does not want to hire the tellers on a trial basis and then monitor the bank’s performance
before making her fi nal decision.

Simulation models
the behavior of
systems

FIGURE 13-5 UML diagram for the class Assignment

Assignment

course—the course code
task—a description of the assignment
date—the due date

+getCourseCode(): string
+getTask(): string
+getDueDate(): string

382 CHAPTER 13 Queues and Priority Queues

 You conclude that the best way to obtain the information needed is to use a computer model to
simulate the behavior of the bank. The fi rst step in simulating a system such as a bank is to construct
a mathematical model that captures the relevant information about the system. For example, how
many tellers does the bank employ? How often do customers arrive? How long do the customers’
transactions take?

 If the model accurately describes the real-world system, a simulation can derive accurate predic-
tions about the system’s overall performance. For example, a simulation could predict the average time
a customer has to wait before receiving service. A simulation can also evaluate proposed changes to the
real-world system, such as predicting the effect of hiring more tellers at the bank. A large decrease in
the time predicted for the average wait of a customer might justify the cost of hiring additional tellers.

 After discussing the problem with Ms. Simpson, you decide that you want the simulation to
determine

• The average time a customer waits to begin service from the current single teller
• The decrease in customer wait time with each new teller added

 Simulation time and events. Central to a simulation is the concept of simulated time. Envision a
stopwatch that measures time elapsed during a simulation. For example, suppose that the model of
the bank specifi es only one teller. At time 0, which is the start of the banking day, the simulated sys-
tem would be in its initial state with no customers. As the simulation runs, the stopwatch ticks away
units of time—perhaps minutes—and certain events occur. At time 20, the bank’s fi rst customer ar-
rives. Because there is no line, the customer goes directly to the teller and begins her transaction,
which will take about 6 minutes to complete. At time 22, a second customer arrives. Because the fi rst
customer has not yet completed her transaction, the second customer must wait in line. At time 26, the
fi rst customer completes her transaction and the second customer can begin his. Figure 13-6 illus-
trates these four times in the simulation.

 To gather the information you need, you run this simulation for a specifi ed period of simulated
time. During the course of the run, you need to keep track of certain statistics, such as the average
time a customer has to wait for service. Notice that in the small example of Figure 13-6 , the fi rst cus-
tomer had to wait 0 minutes to begin a transaction and the second customer had to wait 4 minutes to
begin a transaction—an average wait of 2 minutes.

 One point not addressed in the previous discussion is how to determine when certain events
occur. For example, why did we say that the fi rst customer arrived at time 20 and the second at
time 22? After studying real-world systems like our bank, mathematicians learned to model events
such as the arrival of people by using techniques from probability theory. This statistical informa-
tion is incorporated into the mathematical model of the system and is used to generate events in a
way that refl ects the real world. The simulation uses these events and is thus called an event-
driven simulation . Note that the goal is to refl ect the long-term average behavior of the system
rather than to predict occurrences of specifi c events. This goal is suffi cient for the needs of our
simulation.

 Although the techniques for generating events to refl ect the real world are interesting and impor-
tant, they require a good deal of mathematical sophistication. Therefore, we simply assume that we
already have a list of events available for our use. In particular, for the bank problem, we assume that
a fi le contains the time of each customer’s arrival—an arrival event —and the duration of that cus-
tomer’s transaction once the customer reaches the teller. For example, the data

 Arrival time Transaction length
 20 6
 22 4
 23 2
 30 3

Simulated time

Sample arrival and
transaction times

 Application: Simulation 383

FIGURE 13-6 A bank line at time (a) 0; (b) 20; (c) 22; (d) 26

(a)

(b)

(c)

(d)

time = 26

time = 22

time = 20

time = 0

Bank Line

Bank Line

Bank Line

Bank Line

Teller

TellerCustomer1

Customer2 TellerCustomer1

Customer1

TellerCustomer2

 indicates that the first customer arrives 20 minutes into the simulation and her transaction—
once begun—requires 6 minutes; the second customer arrives 22 minutes into the simulation,
and his transaction requires 4 minutes; and so on. Assume that the input file is ordered by arrival
time.

 The use of a data fi le with predetermined event information is common in simulations. It allows
us to try many different scenarios or bank teller confi gurations with the same set of events to ensure a
fair comparison.

 Notice that the fi le does not contain departure events ; the data does not specify when a customer
will complete the transaction and leave. In fact, the departure time of a customer cannot be deter-
mined until the simulation is run, so the simulation must determine when departures occur. By using
the arrival time and the transaction length, the simulation can easily determine the time at which a

384 CHAPTER 13 Queues and Priority Queues

customer departs. To compute the departure time, we add the length of the transaction to the time
when the customer begins the transaction.

 For example, if we run the simulation by hand with the previous data, we would compute the
departure times as follows:

Time Event
 20 Customer 1 enters bank and begins transaction

Determine customer 1 departure event is at time 26
 22 Customer 2 enters bank and stands at end of line
 23 Customer 3 enters bank and stands at end of line
 26 Customer 1 departs; customer 2 begins transaction

Determine customer 2 departure event is at time 30
 30 Customer 2 departs; customer 3 begins transaction

Determine customer 3 departure event is at time 32
 30 Customer 4 enters bank and stands at end of line
 32 Customer 3 departs; customer 4 begins transaction

Determine customer 4 departure event is at time 35
 35 Customer 4 departs

 A customer’s wait time is the elapsed time between arrival in the bank and the start of the transac-
tion, that is, the amount of time the customer spends in line. The average of this wait time over all the
customers is the statistic that you want to obtain.

 To summarize, this simulation is concerned with two kinds of events:

The results of a
simulation

Note: Kinds of events in an event-driven simulation

• Arrival events indicate the arrival at the bank of a new customer. The input fi le speci-
fi es the times at which the arrival events occur. As such, they are externally generated
events . When a customer arrives at the bank, one of two things happens. If the teller is
idle when the customer arrives, the customer goes to the teller and begins the transac-
tion immediately. If the teller is busy, the new customer must stand at the end of the
line and wait for service.

• Departure events indicate the departure from the bank of a customer who has com-
pleted a transaction. The simulation determines the times at which the departure
events occur. Thus, they are internally generated events . When a customer completes
the transaction, he or she departs and the next person in line—if there is one—begins
a transaction.

A fi rst attempt at a
simulation algorithm

 Event loop. The main tasks of an algorithm that performs a simulation are to repeatedly determine
the times at which events occur and to process the events when they do occur. In simulation and
gaming applications, this process is referred to as the event loop . The algorithm is stated at a high
level as follows:

 // Initialize
currentTime = 0
 Initialize the line to “no customers”

 while (currentTime <= time of the final event)
 {

 Application: Simulation 385

if (an arrival event occurs at time currentTime)
Process the arrival event

if (a departure event occurs at time currentTime)
Process the departure event

// When an arrival event and departure event occur at the same time,
// arbitrarily process the arrival event first

 currentTime++
 }

 But do you really want to increment currentTime by 1? You would for a time-driven simulation ,
where you would determine arrival and departure times at random and compare those times to
currentTime . Video games use this approach, since events can occur or need to be processed in
almost every unit of time, which is typically a frame. In such a case, you would increment
currentTime by 1 to simulate the ticking of a clock.

 Recall, however, that this simulation is event driven, so you have a fi le of predetermined arrival
times and transaction times. Because you are interested only in those times at which arrival
and departure events occur, and because no action is required between events, you can advance
currentTime from the time of one event directly to the time of the next.

 Thus, you can revise the pseudocode solution as follows:

 Initialize the line to “no customers”
 while (events remain to be processed)
 {
 currentTime = time of next event

if (event is an arrival event)
Process the arrival event

else
Process the departure event

// When an arrival event and a departure event occur at the same time,
// arbitrarily process the arrival event first

}

 You must determine the time of the next arrival or departure so that you can implement the state-
ment

 currentTime = time of next event

 To make this determination, you must maintain an event list . An event list contains all arrival
and departure events that will occur but have not occurred yet. The times of the events in the
event list are in ascending order, and thus the next event to be processed is always at the beginning
of the list. The algorithm simply gets the event from the beginning of the list, advances to the
time specifi ed, and processes the event. The diffi culty, then, lies in successfully managing the
event list.

 Managing and processing customers and events. As customers arrive, they go to the back of the
line. The current customer, who was at the front of the line, is being served, and it is this customer that
you remove from the system next. It is thus natural to use a queue, bankQueue , to represent the line of
customers in the bank. For this problem, the only information that you must store in the queue about
each customer is the time of arrival and the length of the transaction.

 Arrival events and departure events are ordered by time, and we always want to remove and
process the next event that should occur—the highest-priority event. The ADT priority queue is
used in this way. Our events can be stored in the priority queue eventListPQueue . We can initialize
eventListPQueue with the arrival events in the simulation data fi le and later add the departure
events as they are generated.

A time-driven
simulation simulates
the ticking of a clock

An event-driven
simulation considers
only the times of
certain events, in
this case, arrivals
and departures

First revision of the
simulation algorithm

An event list
contains all future
arrival events and
departure events

386 CHAPTER 13 Queues and Priority Queues

 But how can you determine the times for the departure events? Observe that the next departure
event always corresponds to the customer that the teller is currently serving. As soon as a customer
begins service, the time of his or her departure is simply

 time of departure = time service begins + length of transaction

 Recall that the length of the customer’s transaction is in the event list, along with the arrival time.
Thus, as soon as a customer begins service, you place a departure event corresponding to this cus-
tomer in the event list. Figure 13-7 illustrates a typical instance of an arrival event and a departure
event used in this simulation.

Two tasks are
required to process
each event

The algorithm for
arrival events

A new customer
always enters the
queue and is
served while at the
queue’s front

The algorithm for
departure events

FIGURE 13-7 A typical instance of (a) an arrival event; (b) a departure event

A(a) Arrival event (b) Departure event

Type Time Length Type Time Length

620 D 26 –

 Now consider how you can process an event when it is time for the event to occur. You must
perform two general types of actions:

• Update the bank line: Add or remove customers.
• Update the event list: Add or remove events.

 To summarize, you process an arrival event as follows:

 // TO PROCESS AN ARRIVAL EVENT

// Update the event list
 Remove the arrival event for customer C from the event list

// Update the bank line
 if (bank line is empty and teller is available)
 {

Departure time of customer C is current time + transaction length
 Add a departure event for customer C to the event list
 Mark the teller as unavailable

 }
 else

Add customer C to the bank line

 When customer C arrives at the bank, if the line is empty and the teller is not serving another cus-
tomer, customer C can go directly to the teller. The wait time is 0 and you insert a departure event into
the event list. If other customers are in line, or if the teller is assisting another customer, customer C
must go to the end of the line.

 You process a departure event as follows:

 // TO PROCESS A DEPARTURE EVENT

 // Update the event list
 Remove the departure event from the event list

// Update the bank line
 if (bank line is not empty)

 Application: Simulation 387

 {
Remove customer C from the front of the bank line
 Customer C begins transaction
 Departure time of customer C is current time + transaction length
 Add a departure event for customer C to the event list

 }
 else

Mark the teller as available.

 When a customer fi nishes a transaction and leaves the bank, if the bank line is not empty, the next customer
C leaves the line and goes to the teller. You insert a departure event for customer C into the event list.

 You can now combine and refi ne the pieces of the solution into an algorithm that performs the
simulation by using the ADTs queue and priority queue:

 // Performs the simulation.
simulate(): void

Create an empty queue bankQueue to represent the bank line
Create an empty priority queue eventListPQueue for the event list

 tellerAvailable = true

// Create and add arrival events to event list
while (data file is not empty)

 {
Get next arrival time a and transaction time t from file

 newArrivalEvent = a new arrival event containing a and t
 eventListPQueue.add(newArrivalEvent)
 }

// Event loop
while (eventListPQueue is not empty)

 {
 newEvent = eventListPQueue.peek()

// Get current time
 currentTime = time of newEvent

if (newEvent is an arrival event)
 processArrival(newEvent, eventListPQueue, bankQueue)

else
 processDeparture(newEvent, eventListPQueue, bankQueue)
 }

// Processes an arrival event.
processArrival(arrivalEvent: Event, eventListPQueue: PriorityQueue,
 bankQueue: Queue)

// Remove this event from the event list
 eventListPQueue.remove()

 customer = customer referenced in arrivalEvent
if (bankQueue.isEmpty() && tellerAvailable)

 {
 departureTime = currentTime + transaction time in arrivalEvent
 newDepartureEvent = a new departure event with departureTime
 eventListPQueue.add(newDepartureEvent)
 tellerAvailable = false
 }

else
 bankQueue.enqueue(customer)

The fi nal
pseudocode for the
event-driven
simulation

388 CHAPTER 13 Queues and Priority Queues

// Processes a departure event .
+processDeparture(departureEvent: Event, eventListPQueue: PriorityQueue,
 bankQueue: Queue)

 // Remove this event from the event list
 eventListPQueue.remove()

if (!bankQueue.isEmpty())
 {

// Customer at front of line begins transaction
 customer = bankQueue.peek()
 bankQueue.dequeue()
 departureTime = currentTime + transaction time in customer
 newDepartureEvent = a new departure event with departureTime
 eventListPQueue.add(newDepartureEvent)
 }

else
 tellerAvailable = true

 Figure 13-8 begins a trace of this algorithm for the data given earlier and shows the changes to
the queue and priority queue. Checkpoint Question 6 asks you to complete the trace. There are several
more implementation details that must be decided, such as how to represent customers and events.
Programming Problem 6 at the end of this chapter asks you to complete the implementation of this
simulation.

FIGURE 13-8 A trace of the bank simulation algorithm for the data
 20 6
 22 4
 23 2
 30 3

Time
bankQueue eventListPQueueFront BackFront Back

A 22 4

A 20 6

A 22 4

A 23 2

D 26 -

D 35 -

A 30 3

A 22 4

A 23 2

D 26 -

A 23 2

D 26 -

A 30 3

A 30 3

A 30 3

A 30 3

D 30 -

D 32 -

A 22 4

A 23 2

A 30 3

A 23 2

0

20

22

23

26

30

32

 Question 5 In the bank simulation problem, why is it impractical to read the entire input
fi le and create a list of all the arrival and departure events before the simulation begins?

CHECK POINT

