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        5.2 Algebraic Expressions 
 One of the tasks a compiler must perform is to recognize and evaluate algebraic expressions. 
For example, consider the C++ assignment statement 

  y  =  x + z * (w / k + z * (7 * 6)); 

 A C++ compiler must determine whether the right side is a syntactically legal algebraic expression; if 
so, the compiler must then indicate how to compute the expression’s value. 

 There are several common defi nitions for a “syntactically legal” algebraic expression. Some 
defi nitions force an expression to be fully parenthesized—that is, to have parentheses around each 
pair of operands together with their operator. Thus, you would have to write  ((a * b) * c)  rather 
than a * b * c . In general, the stricter a defi nition, the easier it is to recognize a syntactically legal 
expression. On the other hand, conforming to overly strict rules of syntax is an inconvenience for 
programmers. 

 This section presents three different languages for algebraic expressions. The expressions in 
these languages are easy to recognize and evaluate but are generally inconvenient to use. However, 
these languages provide us with good, nontrivial applications of grammars. We will see other lan-
guages of algebraic expressions whose members are diffi cult to recognize and evaluate but are con-
venient to use. To avoid unnecessary complications, assume that you have only the binary operators 
+, –, *, and / (no unary operators or exponentiation). Also, assume that all operands in the expression 
are single-letter identifi ers. 

   5.2.1  Kinds of Algebraic Expressions 

 The algebraic expressions you learned about in school are called  infi x expressions . The term “infi x” 
indicates that every binary operator appears  between  its operands. For example, in the expression 

a 1 b

 the operator + is between its operands  a  and  b . This convention necessitates associativity rules, prec-
edence rules, and the use of parentheses to avoid ambiguity. For example, the expression 

a 1 b * c

 is ambiguous. What is the second operand of the +? Is it  b  or is it ( b   *   c )? Similarly, the fi rst operand of 
the  *  could be either  b  or ( a  +  b ). The rule that  *  has higher precedence than + removes the ambiguity 
by specifying that  b  is the fi rst operand of the * and that ( b  *  c ) is the second operand of the +. If you 
want another interpretation, you must use parentheses: 1a 1 b 2  * c

     Note:   Grammars, like recursive algorithms, must have carefully chosen base cases. 
You must ensure that, when a string is decomposed far enough, it will always reach the 
form of one of the grammar’s base cases. 

     Question 1   Consider the language of these character strings: $, cc$d, cccc$dd, 
cccccc$ddd, and so on. Write a recursive grammar for this language. 
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In a prefi x 
expression, an 
operator precedes 
its operands 

 Even with precedence rules, an expression like 

a / b * c

 is ambiguous. Typically, / and * have equal precedence, so you could interpret the expression either as 
(a / b ) * c  or as  a /  ( b * c ). The common practice is to  associate from left to right , thus yielding the fi rst 
interpretation. 

 Two alternatives to the traditional infi x convention are  prefi x  and  postfi x expressions . Under 
these conventions, an operator appears either before its operands (prefi x) or after its operands (post-
fi x). Thus, the infi x expression 

a 1 b

 is written in prefi x form as    

1   a  b

 and in postfi x form as    

a  b  1

 To further illustrate the conventions, consider the two interpretations of the infi x expression
a  +  b   *   c  just considered. You write the expression 

a 1 1b * c 2
 in prefi x form as 

1 a * bc

 The + appears before its operands  a  and ( *   b   c ), and the  *  appears before its operands  b  and  c . The 
same expression is written in postfi x form as 

a b c * 1

 The  *  appears after its operands  b  and  c,  and the + appears after its operands  a  and ( b   c   * ). 
 Similarly, you write the expression 1a 1 b 2  * c

 in prefi x form as 

* 1 a b c

 The  *  appears before its operands (+  a b ) and  c , and the + appears before its operands  a  and  b . The 
same expression is written in postfi x form as 

a b 1 c *

 The + appears after its operands  a  and  b , and the  *  appears after its operands ( a b  +) and  c . 
 If the infi x expression is fully parenthesized, converting it to either prefi x or postfi x form 

is straightforward. Because each operator then corresponds to a pair of parentheses, you simply 
move the operator to the position marked by either the open parenthesis “(”—if you want to 
convert to prefi x form—or the close parenthesis “)”—if you want to convert to postfi x form. This 
position either precedes or follows the operands of the operator. All parentheses would then 
be removed. 

 For example, consider the fully parenthesized infi x expression 1 1a 1 b 2  * c 2

In a postfi x 
expression, an 
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operands 
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 To convert this expression to prefi x form, you fi rst move each operator to the position marked by its 
corresponding open parenthesis:    

  1 1a b 2c 2
T T
*1

   .

 Next, you remove the parentheses to get the desired prefi x expression: 

* 1  a b c

 Similarly, to convert the infi x expression to postfi x form, you move each operator to the position 
marked by its corresponding close parenthesis:    1 1ab 2c 2

T T
1 *

 Then you remove the parentheses: 

a b 1 c *

 When an infi x expression is not fully parenthesized, these conversions are more complex. 
 Chapter   6    discusses the general case of converting an infi x expression to postfi x form. 

 The advantage of prefi x and postfi x expressions is that they never need precedence rules, associ-
ation rules, or parentheses. Therefore, the grammars for prefi x and postfi x expressions are quite 
simple. In addition, the algorithms that recognize and evaluate these expressions are relatively 
straightforward.     

   5.2.2  Prefi x Expressions 

 A grammar that defi nes the language of all prefi x expressions is 

,prefix. 5  ,identifier. 0  ,operator. ,prefix. ,prefix.
,operator. 5  1  02 0  * 0 /
,identifier. 5  a 0  b 0c0  z

 From this grammar, you can construct a recursive algorithm that recognizes whether a string is a 
prefi x expression. If the string is of length 1, it is a prefi x expression if and only if the string is a single 
lowercase letter. Strings of length 1 can be the base case. If the length of the string is greater than 1, 
then for it to be a legal prefi x expression, it must be of the form 

,operator. ,prefix. ,prefix.

 Thus, the algorithm must check to see whether 

•   The fi rst character of the string is an operator 

 and

•   The remainder of the string consists of two consecutive prefi x expressions   

 The fi rst task is trivial, but the second is a bit tricky. How can you tell whether you are looking 
at two consecutive prefi x expressions? A key observation is that if you add  any  string of nonblank 
characters to the end of a prefi x expression, you will no longer have a prefi x expression. That is, if  E  is 
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