164 CHAPTERS5 Recursion as a Problem-Solving Technique

Note: Grammars, like recursive algorithms, must have carefully chosen base cayef.
the

You must ensure that, when a string is decomposed far enough, it will always re
form of one of the grammar’s base cases.
stion 1 Consider the language of these characte : 8, cc8d, ccee$dd,

° ccccc®ddd, and so on. Write a recursive grammar for this
CHECK POINT

c 5.2 AlgebraicE

VideoNote One of the tasks a compiler mu i to recognize and evaluate algebraic expressions.

Processing For example, consider the C++ assign
expressions

y = x+z*w/k+z* (7

+,—, *, and / (no unary operators or exponentiation). Also, assume that all operands in the expressi
are single-letter identifiers.

5.2.1 Kinds of Algebraic Expressions

The algebraic expressions you learned about in school are called infix expressions. The term “infix”
indicates that every binary operator appears between its operands. For example, in the expression

a+b

the operator + is between its operands a and b. This convention necessitates associativity rules, prec-
edence rules, and the use of parentheses to avoid ambiguity. For example, the expression

a+ b*c

is ambiguous. What is the second operand of the +? Is it b or is it (b * ¢)? Similarly, the first operand of
the * could be either b or (a + b). The rule that * has higher precedence than + removes the ambiguity
by specifying that b is the first operand of the * and that (b * ¢) is the second operand of the +. If you
want another interpretation, you must use parentheses:

(a+b)*c

Harden, David

Harden, David

Harden, David

Algebraic Expressions 165

Even with precedence rules, an expression like
alb*c

is ambiguous. Typically, / and * have equal precedence, so you could interpret the expression either as
(a/b)*corasa/(b *c). The common practice is to associate from left to right, thus yielding the first
interpretation.

Two alternatives to the traditional infix convention are prefix and postfix expressions. Under
these conventions, an operator appears either before its operands (prefix) or after its operands (post-

fix). Thus, the infix expression In a prefix
a+ b expression, an
operator precedes
is written in prefix form as its operands
Toab In a postfix

expression, an
operator follows its
ab + operands

and in postfix form as

To further illustrate the conventions, consider the two interpretations of the infix expression
a+ b * ¢ just considered. You write the expression

a+ (b*c)
in prefix form as
+ a*bc

The + appears before its operands a and (* b ¢), and the * appears before its operands b and c. The
same expression is written in postfix form as

abc* +

The * appears after its operands b and ¢, and the + appears after its operands a and (b ¢ *).
Similarly, you write the expression

(a+b)*c
in prefix form as
*+abc

The * appears before its operands (+ a b) and ¢, and the + appears before its operands a and b. The
same expression is written in postfix form as

ab + c*

The + appears after its operands a and b, and the * appears after its operands (¢ b +) and c.

If the infix expression is fully parenthesized, converting it to either prefix or postfix form
is straightforward. Because each operator then corresponds to a pair of parentheses, you simply
move the operator to the position marked by either the open parenthesis “(”—if you want to
convert to prefix form—or the close parenthesis “)”—if you want to convert to postfix form. This
position either precedes or follows the operands of the operator. All parentheses would then
be removed.

For example, consider the fully parenthesized infix expression

((a +b)*c)

166 CHAPTER 5

Converting to prefix
form

Converting to postfix
form

Prefix and postfix
expressions never
need precedence
rules, association
rules, or
parentheses

Recursion as a Problem-Solving Technique

To convert this expression to prefix form, you first move each operator to the position marked by its
corresponding open parenthesis:

((ab)e)
W
*4
Next, you remove the parentheses to get the desired prefix expression:

*+abce

Similarly, to convert the infix expression to postfix form, you move each operator to the position
marked by its corresponding close parenthesis:

((ab)c)
L
+ k
Then you remove the parentheses:

ab+c*

When an infix expression is not fully parenthesized, these conversions are more complex.
Chapter 6 discusses the general case of converting an infix expression to postfix form.

The advantage of prefix and postfix expressions is that they never need precedence rules, associ-
ation rules, or parentheses. Therefore, the grammars for prefix and postfix expressions are quite
simple. In addition, the algorithms that recognize and evaluate these expressions are relatively
straightforward.

construct a recursg
prefix expression. If the string is o i prefix expression if and only if the string is a single
lowercase letter. Strings of length 1 ca e base case. If the length of the string is greater than 1,
then for it to be a legal prefix expressio ust be of the form

e first task is trivial, but the second is a bit tricky. How can you tell her you are looking
two consecutive prefix expressions? A key observation is that if you add any Sging of nonblank
characters to the end of a prefix expression, you will no longer have a prefix expressiofN hat is, if £'is

Harden, David

Harden, David

