
 Using Stacks with Algebraic Expressions 205

   6.3 Using Stacks with Algebraic Expressions 
 This section contains two more problems that you can solve neatly by using the ADT stack. Keep in 
mind throughout that you are using the ADT stack to solve the problems. You can use the stack opera-
tions, but you may not assume any particular implementation. You choose a specifi c implementation 
only as a last step.    

  Chapter   5    presented recursive grammars that specifi ed the syntax of algebraic expressions. 
Recall that prefi x and postfi x expressions avoid the ambiguity inherent in the evaluation of infi x 
expressions. We will now consider stack-based solutions to the problems of evaluating infi x and post-
fi x expressions. To avoid distracting programming issues, we will allow only the binary operators *, /, 
+, and –, and we will disallow exponentiation and unary operators. 

 The strategy we shall adopt here is fi rst to develop an algorithm for evaluating postfi x expres-
sions and then to develop an algorithm for transforming an infi x expression into an equivalent postfi x 
expression. Taken together, these two algorithms provide a way to evaluate infi x expressions. This 
strategy eliminates the need for an algorithm that directly evaluates infi x expressions, which is a 
somewhat more diffi cult problem that Programming Problem 8 considers.    

   6.3.1  Evaluating Postfi x Expressions 

 As we mentioned in  Chapter   5   , some calculators require you to enter postfi x expressions. For exam-
ple, to compute the value of 

 2 * (3 + 4) 

 by using a postfi x calculator, you would enter the sequence 2, 3, 4, +, and *, which corresponds to the 
postfi x expression 

 2 3 4 + * 

 Recall that an operator in a postfi x expression applies to the two operands that immediately precede it. 
Thus, the calculator must be able to retrieve the operands entered most recently. The ADT stack provides 
this capability. In fact, each time you enter an operand, the calculator pushes it onto a stack. When you 
enter an operator, the calculator applies it to the top two operands on the stack, pops the operands from the 
stack, and pushes the result of the operation onto the stack.  Figure   6-4    shows the action of the calculator 
for the previous sequence of operands and operators. The fi nal result, 14, is on the top of the stack. 

 You can formalize the action of the calculator to obtain an algorithm that evaluates a postfi x 
expression, which is entered as a string of characters. To avoid issues that cloud the algorithm with 
programming details, assume that    

•   The string is a syntactically correct postfi x expression  
•   No unary operators are present  
•   No exponentiation operators are present  
•   Operands are single lowercase letters that represent integer values   

     Question 4   Trace the execution of the language-recognition algorithm described in the pre-
vious section for each of the following strings, and show the contents of the stack at each step. 

a.    a$a  
b.    ab$ab  
c.    ab$a  
d.    ab$ba   

CHECK POINT

Your use of an ADT’s 
operations should 
not depend on its 
implementation 

To evaluate an infi x 
expression, fi rst 
convert it to postfi x 
form and then 
evaluate the postfi x 
expression 

 Simplifying 
assumptions



206 CHAPTER 6 Stacks

 The pseudocode algorithm is then    

   for  ( each character  ch  in the string ) 
 { 

if (ch  is an operand ) 
Push the value of the operand  ch  onto the stack  

else   // ch  is an operator named  op
    { 

 // Evaluate and push the result  
        operand2 = top of stack  

Pop the stack  

        operand1 = top of stack  
Pop the stack  

        result = operand1 op operand2 
Push result onto the stack  

    } 
 } 

 Upon termination of the algorithm, the value of the expression will be on the top of the stack. Pro-
gramming Problem 5 at the end of this chapter asks you to implement this algorithm. 

FIGURE 6-4         The effect of a postfi x calculator on a stack when evaluating the expression 
2 * (3 + 4)   

Key entered Calculator action

push 2
push 3
push 4

operand2 = peek      (4)
pop
operand1 = peek      (3)
pop
result = operand1 + operand2  (7)
push result

operand2 = peek      (7)
pop
operand1 = peek        (2)
pop

result = operand1 * operand2  (14)
push result 

2
3
4

+

2
2  3
2  3  4

2  3  4
2  3 
2  3
2

2  7

2  7
2
2

14

Stack (bottom to top):

*

A pseudocode 
algorithm that 
evaluates postfi x 
expressions 

     Question 5   Evaluate the postfi x expression  a b – c +.  Assume the following values for 
the identifi ers:  a  = 7, b = 3, and c = –2. Show the status of the stack after each step. 

CHECK POINT

   6.3.2  Converting Infi x Expressions to Equivalent Postfi x Expressions 

 Now that you know how to evaluate a postfi x expression, you will be able to evaluate an infi x expres-
sion if you fi rst can convert it into an equivalent postfi x expression. The infi x expressions here are the 



 Using Stacks with Algebraic Expressions 207

familiar ones, such as ( a + b )  * c / d – e.  They allow parentheses, operator precedence, and left-to-
right association. 

 Will you ever want to evaluate an infi x expression? Certainly—you have written such expressions 
in programs. The compiler that translated your programs had to generate machine instructions to eval-
uate the expressions. To do so, the compiler fi rst transformed each infi x expression into postfi x form. 
Knowing how to convert an expression from infi x to postfi x notation not only will lead to an algorithm 
to evaluate infi x expressions, but also will give you some insight into the compilation process. 

 If you manually convert a few infi x expressions to postfi x form, you will discover three impor-
tant facts:    

•   The operands always stay in the same order with respect to one another.  
•   An operator will move only “to the right” with respect to the operands; that is, if in the infi x 

expression the operand  x  precedes the operator  op,  it is also true that in the postfi x expression 
the operand x  precedes the operator  op .

•   All parentheses are removed.   

 As a consequence of these three facts, the primary task of the conversion algorithm is determining 
where to place each operator. 

 The following pseudocode describes a fi rst attempt at converting an infi x expression to an equiv-
alent postfi x expression  postfixExp :    

   Initialize  postfixExp  to the empty string  
  for  ( each character  ch  in the infix expression ) 
 { 

switch  (ch) 
    { 

case ch  is an operand : 
Append  ch  to the end of  postfixExp 
break  

case ch  is an operator : 
Save  ch  until you know where to place it  
break  

case ch  is a  '('  or a  ')': 
Discard  ch 
break  

    } 
 } 

 You may have guessed that you really do not want simply to discard the parentheses, as they play 
an important role in determining the placement of the operators. In any infi x expression, a set of 
matching parentheses defi nes an isolated subexpression that consists of an operator and its two oper-
ands. Therefore, the algorithm must evaluate the subexpression independently of the rest of the expres-
sion. Regardless of what the rest of the expression looks like, the operator within the subexpression 
belongs with the operands in that subexpression. The parentheses tell the rest of the expression that 

   You can have the value of this subexpression after it is evaluated; simply ignore 
everything inside.  

 Parentheses are thus one of the factors that determine the placement of the operators in the postfi x 
expression. The other factors are precedence and left-to-right association. 

 In  Chapter   5   , you saw a simple way to convert a fully parenthesized infi x expression to postfi x 
form. Because each operator corresponded to a pair of parentheses, you simply moved each operator 
to the position marked by its close parenthesis and fi nally removed the parentheses. 

 The actual problem is more diffi cult, however, because the infi x expression is not always fully 
parenthesized. Instead, the problem allows precedence and left-to-right association, and therefore 

First draft of  an 
algorithm to convert 
an infi x expression 
to postfi x form 

Facts about 
converting from infi x 
to postfi x 

 Parentheses, 
operator 
precedence, and 
left-to-right
association 
determine where to 
place operators in 
the postfi x 
expression 



208 CHAPTER 6 Stacks

requires a more complex algorithm. The following is a high-level description of what you must do 
when you encounter each character as you read the infi x string from left to right.    

 1.    When you encounter an operand, append it to the output string  postfixExp .
    Justifi cation:  The order of the operands in the postfi x expression is the same as the order in 

the infi x expression, and the operands that appear to the left of an operator in the infi x 
expression also appear to its left in the postfi x expression.  

 2.   Push each “(” onto the stack.  
 3.    When you encounter an operator, if the stack is empty, push the operator onto the stack. 

However, if the stack is not empty, pop operators of greater or equal precedence from the 
stack and append them to postfixExp . You stop when you encounter either a “(” or an 
operator of lower precedence or when the stack becomes empty. You then push the current 
operator in the expression onto the stack. Thus, this step orders the operators by precedence 
and in accordance with left-to-right association. Notice that you continue popping from the 
stack until you encounter an operator of strictly lower precedence than the current operator 
in the infi x expression. You do not stop on equality, because the left-to-right association 
rule says that in case of a tie in precedence, the leftmost operator is applied fi rst—and this 
operator is the one that is already on the stack.  

 4.    When you encounter a “)”, pop operators off the stack and append them to the end of  postfix-
Exp  until you encounter the matching “(”.

    Justifi cation : Within a pair of parentheses, precedence and left-to-right association 
determine the order of the operators, and step 3 has already ordered the operators in 
accordance with these rules.  

 5.    When you reach the end of the string, you append the remaining contents of the stack to 
postfixExp .

 For example,  Figure   6-5    traces the action of the algorithm on the infi x expression  a –  ( b + c   *   d )  / e,
assuming that the stack aStack  and the string  postfixExp  are initially empty. At the end of the algo-
rithm, postfixExp  contains the resulting postfi x expression  a b c d   *   + e / – .

 You can use the previous fi ve-step description of the algorithm to develop a fairly concise 
pseudocode solution, which follows. The symbol • in this algorithm means concatenate (join), so 

FIGURE 6-5         A trace of the algorithm that converts the infi x expression  a  – ( b  +  c  *  d ) / e  to 
postfi x form   

ch aStack (bottom to top) postfixExp

a
–
(
b
+
c
*
d
)

/
e

–
– (
– (
– ( +
– ( +
– ( + *
– ( + *
– ( +
– (
–
– /
– /

a
a
a
ab
ab
abc
abc
abcd
abcd*
abcd*+
abcd*+
abcd*+
abcd*+e
abcd*+e/–

Move operators from stack to
postfixExp until "( "

Copy operators from 
stack to postfixExp

Five steps in the 
process to convert 
from infi x to postfi x 
form 



 Using Stacks with Algebraic Expressions 209

postfixExp • x  means concatenate the string currently in  postfixExp  and the character  x —that is, 
follow the string in  postfixExp  with the character  x .    

   for  ( each character  ch  in the infix expression ) 
 { 

switch  (ch) 
    { 

case operand: // Append operand to end of postfix expression—step 1  
            postfixExp = postfixExp • ch 

break  
case '(': // Save  '('  on stack—step 2  

            aStack.push(ch) 
break  

case operator: // Process stack operators of greater precedence—step 3  
while  (!aStack.isEmpty()  and  aStack.peek()  is not a '(' and  

                    precedence(ch) <= precedence(aStack.peek())) 
           { 

Append aStack.peek() to the end of postfixExp 
                aStack.pop() 
           } 
           aStack.push(ch) // Save the operator  

break  
case ')':  // Pop stack until matching  '(' —step 4  

while  (aStack.peek()  is not a  '(') 
           { 

Append aStack.peek() to the end of postfixExp 
               aStack.pop() 
           } 
           aStack.pop() // Remove the open parenthesis  

break  
    } 
 } 

  // Append to postfixExp  the operators remaining in the stack—step 5  
  while  (!aStack.isEmpty()) 
 { 

Append aStack.peek() to the end of postfixExp 
    aStack.pop() 
 } 

 Because this algorithm assumes that the given infi x expression is syntactically correct, it can 
ignore the return values of the stack operations. Programming Problem 7 at the end of this chapter 
asks you to remove this assumption. 

A pseudocode 
algorithm that 
converts an infi x 
expression to postfi x 
form 

     Note:   Algorithms that evaluate an infi x expression or transform one to postfi x form 
must determine which operands apply to a given operator. Doing so allows for prece-
dence and left-to-right association so that you can omit parentheses. 

     Question 7   Explain the signifi cance of the precedence tests in the infi x-to-postfi x con-
version algorithm. Why is a * test used rather than a > test? 

     Question 6   Convert the infi x expression  a / b * c  to postfi x form. Be sure to account for 
left-to-right association. Show the status of the stack after each step. 

CHECK POINT


