
 Backtracking 177

while (!done && (nextCity != NO_CITY))
 {
 done = isPath(nextCity, destinationCity);

if (!done)
nextCity = getNextCity(originCity);

 } // end while

 result = done;
} // end if

return result;
} // end isPath

Note: The subproblems that a recursive solution generates eventually must reach a base
case. Failure to do so could result in an algorithm that does not terminate. Solutions that
involve backtracking are particularly subject to this kind of error.

 5.3.2 The Eight Queens Problem

 A chessboard contains 64 squares that form eight rows and eight columns. The most powerful piece
in the game of chess is the queen, because it can attack any other piece within its row, within its col-
umn, or along its diagonal. The Eight Queens problem asks you to place eight queens on the chess-
board so that no queen can attack any other queen.

 One strategy is to guess at a solution. However, according to Section 2.6.3 of Chapter 2 , there are
g (64, 8) = 4,426,165,368 ways to arrange eight queens on a chessboard of 64 squares—so many that
it would be exhausting to check all of them for a solution to this problem. Nevertheless, a simple
observation eliminates many arrangements from consideration: No queen can reside in a row or a
column that contains another queen. Alternatively, each row and column can contain exactly one
queen. Thus, attacks along rows or columns are eliminated, leaving only 8! = 40,320 arrangements of
queens to be checked for attacks along diagonals. A solution now appears more feasible.

 Question 6 Trace the method isPath with the map in Figure 5-6 for the following
requests. Show the recursive calls and the returns from each.
• Fly from A to B .
• Fly from A to D .
• Fly from C to G .

CHECK POINT

Place eight queens
on the chessboard
so that no queen
can attack any other
queen

FIGURE 5-6 Flight map for Checkpoint Question 6

A C E

I

F

GH

D
B

Harden, David
Start Here

Harden, David

Harden, David

178 CHAPTER 5 Recursion as a Problem-Solving Technique

 Suppose that you provide some organization for the guessing strategy by placing one queen per
column, beginning with the fi rst square of column 1. Figure 5-7 a shows this queen and its range of
attack. When you consider column 2, you eliminate its fi rst square because row 1 contains a queen,
you eliminate its second square because of a diagonal attack, and you fi nally place a queen in the third
square of column 2, as Figure 5-7 b illustrates. The black dots in the fi gure indicate squares that are
rejected because a queen in that square is subject to attack by another queen in an earlier column. The
blue dots indicate the additional squares that the new queen can attack.

 We continue to place queens in this manner until we get to column 6, as Figure 5-7 e shows.
Although the fi ve placed queens cannot attack each other, they can attack any square in column 6, and
therefore, you cannot place a queen in column 6. You must back up to column 5 and move its queen to
the next possible square in column 5, which is in the last row, as Figure 5-7 f indicates. When you con-
sider column 6 once again, there are still no choices for a queen in that column. Because you have
exhausted the possibilities in column 5, you must back up to column 4. As Figure 5-7 g shows, the
next possible square in column 4 is in row 7. You then consider column 5 again and place a queen in
row 2 (Figure 5-7 h).

 How can you use recursion in the process that was just described? Consider an algorithm that
places a queen in a column, given that you have placed queens correctly in the preceding columns.

FIGURE 5-7 Placing one queen at a time in each column, and the placed queens’ range of
attack: (a) the fi rst queen in column 1; (b) the second queen in column 2; (c) the
third queen in column 3; (d) the fourth queen in column 4; (e) the fi ve queens
can attack all of column 6; (f) backtracking to column 5 to try another square for
the queen; (g) backtracking to column 4 to try another square for the queen;
(h) considering column 5 again

1 2 3 4 5 6 7 8

(e) (f) (g)

1 2 3 4 5 6 7 8

(a)

1 2 3 4 5 6 7 8

(b)

1 2 3 4 5 6 7 8

(c)

1 2 3 4 5 6 7 8

(d)

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

(h)

1 2 3 4 5 6 7 8

Place queens one
column at a time

If you reach an
impasse, backtrack
to the previous
column

 Backtracking 179

First, if there are no more columns to consider, you are fi nished; this is the base case. Otherwise, after
you successfully place a queen in the current column, you need to consider the next column. That is,
you need to solve the same problem with one fewer column; this is the recursive step. Thus, you begin
with eight columns, consider smaller problems that decrease in size by one column at each recursive
step, and reach the base case when you have a problem with no columns.

 This solution appears to satisfy the criteria for a recursive solution. However, you do not know
whether you can successfully place a queen in the current column. If you can, you recursively con-
sider the next column. If you cannot place a queen in the current column, you need to backtrack, as
has already been described.

 The Eight Queens problem can be solved in a variety of ways. The solution in this chapter uses
two classes: a Board class to represent the chessboard and a Queen class to represent a queen on the
board. A Queen object keeps track of its row and column placement and contains a static pointer to the
Board . It also has operations to move to the next row and to see whether it is subject to attack. A Board
object keeps track of the Queen objects currently on the board and contains operations—such as
placeQueens —to perform the Eight Queens problem and display the solution.

 The following pseudocode describes the algorithm for placing queens in columns, given that the
previous columns contain queens that cannot attack one another:

 // Places queens in eight columns.
placeQueens(queen: Queen): void

 if (queen's column is greater than the last column)
The problem is solved

else
 {

while (unconsidered squares exist in queen's column and
 the problem is unsolved)
 {

 Find the next square in queen's column that is
 not under attack by a queen in an earlier column

if (such a square exists)
 {

Place a queen in the square

// Try next column
 placeQueens(new Queen(firstRow, queen's column + 1))

if (no queen is possible in the next column)
 {

Delete the new queen
Remove the last queen placed on the board and

 consider the next square in that column
 }
 }
 }
 }

 The Eight Queens problem is initiated by the method doEightQueens , which calls placeQueens
with a new queen in the upper-left corner of the board:

 doEightQueens()
 {
 placeQueens(new Queen(firstRow, firstColumn))
 }

 After doEightQueens has completed, the board may display the solution, if one was found.

The solution
combines recursion
with backtracking

Harden, David
Stop Here

Harden, David

Harden, David

Harden, David

