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while  (!done && (nextCity != NO_CITY))
        { 
            done = isPath(nextCity, destinationCity); 

if  (!done)
nextCity = getNextCity(originCity);

        } // end while 

        result = done;
} // end if 

return result;
} // end isPath   

Note:   The subproblems that a recursive solution generates eventually must reach a base 
case. Failure to do so could result in an algorithm that does not terminate. Solutions that 
involve backtracking are particularly subject to this kind of error. 

       5.3.2  The Eight Queens Problem 

 A chessboard contains 64 squares that form eight rows and eight columns. The most powerful piece 
in the game of chess is the queen, because it can attack any other piece within its row, within its col-
umn, or along its diagonal. The Eight Queens problem asks you to place eight queens on the chess-
board so that no queen can attack any other queen.    

 One strategy is to guess at a solution. However, according to  Section   2.6.3    of  Chapter   2   , there are 
g (64, 8) = 4,426,165,368 ways to arrange eight queens on a chessboard of 64 squares—so many that 
it would be exhausting to check all of them for a solution to this problem. Nevertheless, a simple 
observation eliminates many arrangements from consideration: No queen can reside in a row or a 
column that contains another queen. Alternatively, each row and column can contain exactly one 
queen. Thus, attacks along rows or columns are eliminated, leaving only 8! = 40,320 arrangements of 
queens to be checked for attacks along diagonals. A solution now appears more feasible. 

     Question 6   Trace the method  isPath  with the map in  Figure   5-6    for the following 
requests. Show the recursive calls and the returns from each. 
•   Fly from  A  to  B .
•   Fly from  A  to  D .
•   Fly from  C  to  G .
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FIGURE 5-6         Flight map for Checkpoint Question 6   
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 Suppose that you provide some organization for the guessing strategy by placing one queen per 
column, beginning with the fi rst square of column 1.  Figure   5-7   a shows this queen and its range of 
attack. When you consider column 2, you eliminate its fi rst square because row 1 contains a queen, 
you eliminate its second square because of a diagonal attack, and you fi nally place a queen in the third 
square of column 2, as  Figure   5-7   b illustrates. The black dots in the fi gure indicate squares that are 
rejected because a queen in that square is subject to attack by another queen in an earlier column. The 
blue dots indicate the additional squares that the new queen can attack.     

 We continue to place queens in this manner until we get to column 6, as  Figure   5-7   e shows. 
Although the fi ve placed queens cannot attack each other, they can attack any square in column 6, and 
therefore, you cannot place a queen in column 6. You must back up to column 5 and move its queen to 
the next possible square in column 5, which is in the last row, as  Figure   5-7   f indicates. When you con-
sider column 6 once again, there are still no choices for a queen in that column. Because you have 
exhausted the possibilities in column 5, you must back up to column 4. As  Figure   5-7   g shows, the 
next possible square in column 4 is in row 7. You then consider column 5 again and place a queen in 
row 2 ( Figure   5-7   h).    

 How can you use recursion in the process that was just described? Consider an algorithm that 
places a queen in a column, given that you have placed queens correctly in the preceding columns. 

FIGURE 5-7         Placing one queen at a time in each column, and the placed queens’ range of 
attack: (a) the fi rst queen in column 1; (b) the second queen in column 2; (c) the 
third queen in column 3; (d) the fourth queen in column 4; (e) the fi ve queens 
can attack all of column 6; (f) backtracking to column 5 to try another square for 
the queen; (g) backtracking to column 4 to try another square for the queen; 
(h) considering column 5 again   
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First, if there are no more columns to consider, you are fi nished; this is the base case. Otherwise, after 
you successfully place a queen in the current column, you need to consider the next column. That is, 
you need to solve the same problem with one fewer column; this is the recursive step. Thus, you begin 
with eight columns, consider smaller problems that decrease in size by one column at each recursive 
step, and reach the base case when you have a problem with no columns. 

 This solution appears to satisfy the criteria for a recursive solution. However, you do not know 
whether you can successfully place a queen in the current column. If you can, you recursively con-
sider the next column. If you cannot place a queen in the current column, you need to backtrack, as 
has already been described. 

 The Eight Queens problem can be solved in a variety of ways. The solution in this chapter uses 
two classes: a  Board  class to represent the chessboard and a  Queen  class to represent a queen on the 
board. A  Queen  object keeps track of its row and column placement and contains a static pointer to the 
Board . It also has operations to move to the next row and to see whether it is subject to attack. A  Board
object keeps track of the  Queen  objects currently on the board and contains operations—such as 
placeQueens —to perform the Eight Queens problem and display the solution. 

 The following pseudocode describes the algorithm for placing queens in columns, given that the 
previous columns contain queens that cannot attack one another:    

  // Places queens in eight columns.  
placeQueens(queen: Queen): void 

      if ( queen's column is greater than the last column ) 
The problem is solved  

else  
    { 

while ( unconsidered squares exist in queen's column and  
                                  the problem is unsolved ) 
        { 

             Find the next square in queen's column that is  
               not under attack by a queen in an earlier column  

if ( such a square exists ) 
           { 

Place a queen in the square  

// Try next column  
               placeQueens( new Queen(firstRow, queen's column + 1)) 

if ( no queen is possible in the next column ) 
               { 

Delete the new queen  
Remove the last queen placed on the board and  

                       consider the next square in that column  
               } 
           } 
        } 
   } 

 The Eight Queens problem is initiated by the method  doEightQueens , which calls  placeQueens
with a new queen in the upper-left corner of the board: 

  doEightQueens() 
 { 
    placeQueens( new Queen(firstRow, firstColumn)) 
 } 

 After  doEightQueens  has completed, the board may display the solution, if one was found. 
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